Verifying the Goldbach conjecture up to $4\cdot 10^{14}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Checking the Odd Goldbach Conjecture up To

Vinogradov’s theorem states that any sufficiently large odd integer is the sum of three prime numbers. This theorem allows us to suppose the conjecture that this is true for all odd integers. In this paper, we describe the implementation of an algorithm which allowed us to check this conjecture up to 1020.

متن کامل

Checking the odd Goldbach conjecture up to 1020

Vinogradov’s theorem states that any sufficiently large odd integer is the sum of three prime numbers. This theorem allows us to suppose the conjecture that this is true for all odd integers. In this paper, we describe the implementation of an algorithm which allowed us to check this conjecture up to 1020.

متن کامل

The Goldbach Conjecture*

In the 20th century, many great mathematicians were attracted by this conjecture. In 1900, D. Hilbert gave a famous speech in an international mathematical conference, in which he proposed 23 problems to mathematicians. The Goldbach conjecture is a part of his 8th problem and the other part is the Riemann hypothesis. G. H. Hardy said that the Goldbach conjecture is one of the most difficult pro...

متن کامل

On the Goldbach Conjecture in Arithmetic Progressions

It is proved that for a given integer N and for all but (log N)B prime numbers k ≤ N5/48−ε the following is true: For any positive integers bi, i ∈ {1, 2, 3}, (bi, k) = 1 that satisfy N ≡ b1 + b2 + b3 (mod k), N can be written as N = p1+p2+p3, where the pi, i ∈ {1, 2, 3} are prime numbers that satisfy pi ≡ bi (mod k).

متن کامل

Adelic Singular Series and the Goldbach Conjecture

The purpose of this paper is to show how adelic ideas might be used to make progress on the Goldbach Conjecture. In particular, we present a new Schwartz function which is able to keep track of the number of prime factors of an integer. We then use this, along with the Ono/Igusa adelic methods for Diophantine equations, to present an infinite sum whose evaluation would prove or disprove the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2000

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-00-01290-4